Liang Guo, male
Professor in Crop Genetics and Breeding
Address:
National Key Laboratory of Crop Genetic Improvement
Huazhong Agricultural University
Wuhan 430070, China
Email:guoliang@mail.hzau.edu.cn
Education
2006.08-2011.12 University of Missouri-Saint Louis, Ph.D in Cellular and Molecular Biology
2004.09-2006.07 Sichuan University, MS in Plant Science
2001.09-2004.07 Sichuan University, BS in Biotechnology
Work
2012.01-2014.09 Donald Danforth Plant Science Center, postdoctoral associate
2014.10-now Huazhong Agricultural University, professor
Funding:
1. Dissection of the genetic basis of rapeseed oil synthesis by lipidome analysis. National Natural Science Foundation of China, 2019-2022.
2. Cultivation and industrialization of transgenic rape varieties. Major projects for the cultivation of new varieties of genetically modified organisms, 2018-2020.
3. Research and application of functional genomics in wheat and other crops. National major R & D plan, 2016-2020.
4. Investigation of sphingolipid-mediated signaling in plant. National Natural Science Foundation of China, 2016-2019.
Publications:
1. Tang S, Liu D, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang Q*, Guo L* (2020) Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Plant Journal doi:10.1111/tpj.15003
2. Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J, Guo L* and Lu S* (2020) An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Molecular Breeding 40:96
3. Kong Q, Yang Y, Low PM, Guo L, Yuan L Ma W* (2020) The function of the WRI1-TCP4 regulatory module in lipid biosynthesis. Plant Signaling & Behavior 15:1812878
4. Chawla H, Lee H, Gabur I, amilselvan-Nattar-Amutha S, Obermeier C, Song J, Liu K, Guo L, Parkin I, Snowdon R* (2020) Long-read genome sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol J DOI: https://doi.org/10.1111/pbi.13456
5. Kong Q, Singh S, Mantyla J, Pattanaik S, Guo L, Yuan L, Benning C and Ma W* (2020) TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 4 interacts with WRINKLED1 to mediate seed oil biosynthesis. Plant Physiology 184:658-665
6. Kim SC, Guo L and X Wang* (2020) Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nature Communications 11:3439
7. Dai C, Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, Liu K, Tu J, Shen J, Yi B, Fu T, Li X and Ma C* (2020) Roles of Brassica napus DELLA Protein BnaA6.RGA in modulation of drought tolerance by interacting one of ABA signaling component BnaA10.ABF2. Frontiers in Plant Science 11:577
8. You L#, Zhang J, Li L, Xiao C, Feng X, Chen S, Guo L, and Honghong Hu* (2020) Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO2. Journal of Experimental Botany 71:4093-4108
9. Cai G, Fan C, Liu S, Yang Q, Liu D, Wu J, Li J, Zhou Y, Guo L* and X Wang* (2020) Nonspecific Phospholipase C6 Increases Seed Oil Production in Oilseed Brassicaceae Plants. New Phytologist 226:1055-1073
10. Sturtevant D#, Lu S#, Zhou Z#, Shen Y#, Wang S, Song J, Zhong J, Burks D, Yang Z, Yang Q, Cannon A, Herrfurth C, Feussner I, Borisjuk L, Munz E, Verbeck G, Wang X, Azad R, Singleton B, Dyer J, Chen L*, Chapman K* and Guo L* (2020) The genome of jojoba (Simmondsia chinensis): a taxonomically-isolated species that directs wax-ester accumulation in its seeds. Science Advances 6:eaay3240
11. Song J#, Guan Z#, Hu J#, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W, Cheng Y, Zhang Y, Liu K*, Yang Q*, Chen L* and Guo L* (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34-45
12. Lu S#, Aziz M#, Sturtevant D, Chapman K* and Guo L* (2020) Heterogeneous distribution of erucic acid in Brassica napus seeds. Frontiers in Plant Science 10:1744
13. Iqbal S#, Ali U#, Fadlalla T, Li Q, Liu H, Lu S* and Guo L* (2020) Genome-wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L. Plant Physiology and Biochemistry 147:101-112
14. Kong Q, Yang Y, Guo L, Yuan L and Ma W* (2020) Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor. Frontiers in Plant Science 11:24
15. Li N, Meng H, Li S, Zhang Z, Wang S, Liu A, Li Q, Zhao X, Song Q, Li X, Guo L, Li H, Zuo J and Luo K* (2020) Two novel plastid fatty acid exporters contribute to seed oil accumulation in Arabidopsis. Plant Physiology 182:1910-1919
16. Ding L#, Li M#, Guo X#, Tang M#, Cao J, Wang Z, Zhu K, Guo L, Liu S* and Tan X* (2020) Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnol J 18:1255-1270
17. Chen B#, Zhang G#, Li P, Yang J, Guo L, Benning C, Wang X and Zhao J* (2020) Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis, and hormone signaling in soybean (Glycine max). Plant Biotechnol J 18:155-171
18. Lu S#, Liu H#, Jin C, Li Q and Guo L* (2019) An Efficient and Comprehensive Plant Glycerolipids Analysis Approach Based on High-performance Liquid Chromatography-quadrupole Time of Flight Mass Spectrometer. Plant Direct 3:1-13
19. Zhang Y#, Ali U#, Zhang G, Yu L, Fang S, Iqbal S, Li H, Lu S and Guo L* (2019) Transcriptome analysis reveals genes commonly responding to multiple abiotic stresses in rapeseed. Molecular Breeding 39:158
20. Lu S#, Fadlalla T#, Tang S, Li L, Ali U, Li Q and Guo L* (2019) Genome-wide analysis of phospholipase D gene family and profiling of phospholipids under abiotic stresses in Brassica napus. Plant and Cell Physiology 60:1556-1566
21. Li N#, *, Zhang Y#, Meng H#, Li S, Wang S, Xiao Z, Chang P, Zhang X, Li Q, Guo L, Igarashi Y and Luo F* (2019) Characterization of Fatty Acid EXporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. Biotechnology for Biofuels 12:14
22. Xie K*, Guo L, Bai Y, Liu W, Yan J and Bucher M* (2019) Microbiomics and Plant Health: An Interdisciplinary and International Workshop on the Plant Microbiome. Molecular Plant 12: 1-3
23. Ali U, Li H, Wang X and Guo L* (2018) Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. Molecular Plant 11: 1328-1343
24. Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman K* and Guo L* (2018) Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Plant Journal 94: 915-932
25. Ali M, Hussain R, Rehman N, She G, Li P, Wan X and Guo L* and Zhao J* (2018) De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage. DNA Research 25: 597-617
26. Su Y, Li M, Guo L and Wang X* (2018) Different effects of phospholipase Dζ2 and nonspecific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant Journal 94: 315-326
27. Zhang Q, Berkey R, Blakeslee J, Lin J, Ma X, King H, Liddle A and Guo L, Munnik T, Wang X, Xiao S* (2018) Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. Journal of Experimental Botany 69: 3675-3688
28. Rehman N, Ali M, Ahmad M, Guo L* and Zhao J* (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbial Pathogenesis 114: 420-430
29. Zhang Q, Song P, Qu Y, Wang P, Jia Q and Guo L, Zhang C, Mao T, Yuan M, Wang X and Zhang W* (2017) Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant, Cell & Environment 40: 2220-2235
30. Wei F, Fanella B, Guo L* and Wang X* (2016) Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Scientific Reports 6: 36172
31. Hong Y*, Zhao J*, Guo L, Kim S, Deng X, Wang G, Zhang G, Li M and Wang X* (2016) Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research 62: 55-74
32. Lu S*, Yao S, Wang G, Guo L, Zhou Y, Hong Y and Wang X* (2016) Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability. Plant Biotechnol J 14:926-937
33. Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C and Zhou Y* (2016) Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Scientific Reports 6:19007
34. Guo L, Ma F, Wei F, Fanella B, Allen D and Wang X* (2014) Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Arabidopsis Cellular Metabolism and Promotes Seed Oil Accumulation. Plant Cell 26:3023-3035
35. Wang X, Guo L, Wang G and Li M (2014) PLD: Phospholipase Ds in Plant Signaling, Phospholipases in Plant Signaling, Springer: 3-26 (Book chapter)
36. Yao H, Wang G, Guo L and Wang X* (2013) Phosphatidic Acid Interacts with WEREWOLF MYB and Regulates Its Nuclear Localization and Function in Arabidopsis. Plant Cell 25:5030-5042
37. Kim S, Guo L and Wang X* (2013) Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-Phosphase Dehydrogenase and Promotes Its Cleavage in Arabidopsis. J Biol Chem 288:11834-11844
38. Guo L, Devaiah S, Narasimhan R, Pan X, Zhang Y, Zhang W and Wang X* (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in stress response in Arabidopsis. Plant Cell 24:2200-2212
39. Guo L, Mishra G, Markham J, Li M, Tawfall A, Welti R and Wang X* (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286-8296
40. Guo L and Wang X* (2012) Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Frontiers in Plant Science 3:1-7
41. Guo L, Mishra G, Taylor K and Wang X* (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286:13336-13345
42. Li M, Bahn S, Guo L, Musgrave W, Berg H, Welti R and Wang X* (2011) Patatin-related phospholipase pPLAIIIbeta-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell 23:1107-1123
43. Guo L, Qing R, He W, Xu Y, Tang L, Wang S and Chen F* (2008) Identification and characterization of a plastidial ω3-fatty acid desaturase gene from Jatrophacurcas. Chin J Appl Environ Biol 14:469-474