教授
当前位置:首页 > 师资队伍 > 教师名录 > 教授
彭良才
发布时间:2017-02-22

                             

基本信息


姓名: 彭良才 出生年月: 1963.3

性别: 硕/博导: 博导

民族: 开设课程: 生物质能学、生物能源工程、高级能源植物学

职称: 教授 研究方向: 生物质与生物能源,作物遗传育种

学位: 博士


联系方式

办公电话:027-87281765
电子邮件:lpeng@mail.hzau.edu.cnpengliangcai2007@sina.com

实验室网站:http://bbrc.hzau.edu.cn/


个人简介

彭良才,教授,博导。1983年获华中农业大学农学学士,1987年获中国农科院研究生院农学硕士,1997年获澳大利亚国立大学生化与分子生物学博士。1992-2006年在澳大利亚、美国留学工作期间,先后师从于澳大利亚科学院院士Richard Williamson博士和美国科学院院士Debby Delmer博士,研究论文两次发表在美国科学(Science) 杂志,引用次数1200余次。2006年任华中农业大学植物科学技术学院教授,所带领的团队包括10余名中青年教师骨干和50名研究生,已培养硕士80名、博士20名。

主要从事植物纤维素生物合成,植物细胞壁代谢,糖代谢与碳源分配,生物质降解与利用等方面的科学研究。此外,还利用现代生物技术和分子育种途径,选育抗逆性强、生物质产量高和品质优良的农作物和能源植物。近几年,在生物技术杂志(Biotechnology AdvancePlant Biotechnology Journal, Biotechnology for Biofuels), 生物能源杂志(Applied Energy, Biomass and Bioenergy, Sustainable Energy & Fuels)、植物生物学杂志(Nucleic Acids Research, Journal of Experimental Botany, Plant and Cell Physiology, Plant Molecular Biology, Planta, Plant Science,), 应用化学与材料科学杂志(Green ChemistryCarbohydrate Polymers, Food Hydrocolloids, Talanta, Cellulose),农业和环境工程杂志(Bioresource Technology, Science of the Total Environment, Plant and Soil, Industry Crops and Products, Waste and Biomass Valorization)上发表SCI论文70余篇,其中影响因子大于9.0的文章7篇;大于5.0JCR一区的文章近50篇;ESI高被引论文3篇。参编专著2部,获批中国专利3项,申请专利7项。

           

教育经历:
1994/03-1997/09
,澳大利亚国立大学,生物科学研究院,生物化学与分子生物学博士
1984/09-1987/09
,中国农业科学院,研究生院,农学硕士
1979/09-1983/08
,华中农业大学,农学系,农学学士
           

研究经历:
2006/03-
至今,华中农业大学,植物科技学院教授,生物质与生物能源研究中心主任,作物遗传改良国家重点实验室固定研究员。研究领域:植物纤维素生物合成,植物细胞壁合成代谢,生物质产量与碳源分配,生物质降解与生物能源转化工艺,转基因技术与作物遗传育种等。
2004/06-2006/02
,美国加州大学戴维斯分校,微生物系,博士后研究员/助理研究员。
2000/06-2004/05
,美国农业部植物基因表达中心,加州大学柏克莱分校,植物遗传学研究人员。
1997/09-2000/05
,美国加州大学戴维斯分校,植物生物系,博士后研究人员。
1992/02-1994/02
,澳大利亚国立大学,医学科学研究院,国际科学基金访问学者。
1987/07-1992/02
,中国农业科学院,油料作物研究所,助理研究员,主持国家自然科学基金和国际科学基金2项课题。

 

学术任职:

第一、二、三届国际生物能源与生物技术学术会议主席、中澳生物技术与生物能源双边学术会议主席、中美植物生物学与生物质利用双边学术会议主席、美国加州第三届国际细胞壁生物合成会议大会分会主席。Plant Cell, Plant Physiology, Plant Biotechnology Journal, Plant Science, Planta, Bioresource Technology, Biotechnology for Biofuels, Applied Energy, Bioenergy Research等杂志审稿人;Frontiers in Plant Physiology, Life Science Globe, Agriculture Science, Advances in Forestry Letters 编委。中国植物生理学会第十一届理事会植物生物质与生物能源专业委员会副主任、上海交通大学兼职教授、中科院水生生物研究所学术委员会委员、中国科学院植物种质创新与特色农业重点实验室学术委员会委员、内蒙古大学学术委员会委员、湖南农业大学教育厅植物遗传与分子生物学重点实验室学术委员会委员、江苏省生物质能与酶技术重点实验室学术委员会委员、湖北省生物产业发展专家咨询委员会委员、中国生物质产业网专家执行委员会委员、湖北省循环经济协会专家委员会委员。美国植物生物学家会员、澳大利亚/新西兰细胞生物学会会员、澳大利亚植物生理学家会员、澳大利亚生物化学与分子生物学会会员、中国遗传学会会员。


研究领域与方向:

植物纤维素生物合成,植物细胞壁代谢调控网络,糖代谢与碳源分配,生物质降解与酶工程,乙醇发酵与生物能源转化等。此外,利用现代生物技术和分子育种途径,选育抗逆性强、生物质产量高和品质优良的农作物和能源植物,并设计生物质乙醇和副产品(饲料、造纸、化工产品)加工工艺与大规模生产工艺流程。

 

海外留学及回国工作经历:

彭良才博士在国外求学和工作期间,曾师从于国际植物纤维素生物合成领域领军人物, 美国科学院院士 Delmer博士和国际著名植物细胞壁专家, 澳大利亚科学院院士 Williamsons博士,过去十多年该领域两次重要的突破都来自于彭良才参与的研究工作。

作为最主要两名研究人员之一,彭良才博士在澳大利亚国立大学生物学院攻读博士期间,通过筛选和鉴定四个拟南芥(Arabidopsis)的突变体(rsw1, 2, 3, 5)首次发现和鉴定了植物纤维素合酶基因,并提供了充足的生化和遗传证据。彭博士首先通过改进一个便于简易提取和测定微小拟南芥植物细胞壁结构和成份的化学方法,测定了这些拟南芥突变体的纤维素合成严重受阻并同时生产大量的非晶体状纤维素(non-crystalline cellulose)和淀粉(starch)。由于此非晶体状纤维素具有能够有效被纤维素酶(endo-cellulase)分解或被弱酸全部降解成单糖(glucose)的特性,为利用现代生物技术去提高植物纤维素降解并高效转化成生物能源提供了可行性的理论依据。此外,从突变体积累了大量的淀粉现象中,彭博士同时提出了一个全新的关于植物碳源分配(carbon partitioning)通道的理论,即光合作用产生的碳水化合物可以从纤维素中转存于淀粉里,从而可提高淀粉植物(如小麦,玉米,水稻)的淀粉产量。科学杂志刊登其论文,并发表了特别社论,世界最大电视有限通讯网(CNN)澳大利亚人”(Australian)报等称此项发现终于圆了全球科学家几十年的梦想,随后其它有关具体研究结果发表于德国的植物”(Planta)杂志,并申请了国际专利。

随后在美国加州大学戴维斯分校,彭良才博士作为完全独立博士后研究员,通过利用两种独特纤维素抑制剂(DCBCGA),进一步发现了固醇糖甙(SG)分子是棉花纤维素合成的前驱物,并通过改进酵母基因表达系统和建立一个特殊酶反应基质在植物体外的试管中合成了限量棉花纤维素物质,还初步探明了两种抑制剂抑制纤维素合成的独特作用:即CGA主要阻抑纤维素合成酶形成玫瑰状复合体(rosette),导致非晶体状态纤维素的大量积累;而DCB则抑制前驱物(SG)的合成,致使纤维素合成量的直接减少。基于以上研究结果,一个可鉴定植物纤维素生物合成酶和植物细胞壁合成酶超大基因群(大约50基因)功能的实验系统由此建立起来,从而可深入研究纤维素生物合成的分子机理和全部通道,并用现代分子遗传操纵技术去改良作物纤维素品质,增加纤维素的数量。相关三篇论文发表于“Science”“Plant Physiology”杂志,“Science”杂志同期发表了专家评论,称纤维素生物合成机理研究迈出了关键的第一步,至今已被国际知名杂志引用1500余次。回国前,还从事过植物和酵母抗氧化和抗环境胁迫分子机理与信号传导等方面的研究。

回国后组建华中农业大学生物质与生物能源研究中心,所带领的团队包括近十名中青年教师和五十余名研究生。已筛选到水稻生物质突变体近120(T-DNA, EMS and r-Ray),玉米突变体 22(MU)和小麦突变体37(EMS and r-Ray)。依托作物遗传改良国家重点实验室, 组建了作物生物质高通量体外快速分析平台(近红外仪), 作物碳水化合物精细测定平台(气质联用仪), 作物次生代谢网络定量分析平台(液质联用仪), 作物物理机械特征与品质鉴定平台(拉力仪,X-Ray ) 和作物生物质生物信息学分析平台等。近期已初步鉴定出作物细胞壁纤维素表面亚分子沟槽结构(原创发现)及结构形成所需的三大类十多个基因,提出了系统设计重建作物细胞壁结构的假说和三大策略,旨在提高作物生长发育过程中机械强度和抗倒伏能力,增强作物抗病和抗逆能力,并提高作物生物质高效降解转化为生物能源或有效还田或制作其它工业产品。近几年已在国际植物生物学、生物技术、生物能源和化学工程等权威杂志发表论文70余篇,至今所发表论文共被引用次数达2200余次。




科研项目

项目名称:萃取植物收获物无害化资源化利用关键技术与设备研发

项目来源:国家重点研发计划

起止时间:2016-2020

科研经费:352

本人承担工作:主持人

 

项目名称:OsCESA479蛋白P-CR区域在水稻茎秆纤维素合成中的

功能研究

项目来源:国家自然科学基金

起止时间:2017-2020

科研经费:74

本人承担工作:主持人

 

项目名称:作物生物能源物质高效合成和转化的分子机理

项目来源:高等学校学科创新引智基地

起止时间;2008-2017

科研经费:1800

本人承担工作:主持人
           

项目名称:棉花纤维品质和水稻抗逆相关的纤维素合成关键基因的克隆与功能验证

项目来源:转基因生物新品种培育科技重大专项

起止时间:2009-2011

科研经费:270

本人承担工作:主持人
           

项目名称:新型能源作物细胞壁生物合成分子机理研究

项目来源:973计划前期研究专项

起止时间:2009-2011

科研经费:70

本人承担工作:主持人
           

项目名称:生物能源物质合成和降解的分子机理

项目来源:教育部科研启动经费

起止时间:2009-2010

科研经费:300

本人承担工作:主持人


发表的论文及著作

备注: #为第一作者(Equal contributors);*为通讯作者(Correspondence);

IF为当年或五年影响因子;被引次数(Times Cited)截止日期为2020年3月。

代表性论文

1. Peng, L., Kawagoe, Y., Hogan, P., Delmer, D.* Sitosterol b -1,4-glucoside as primer for cellulose synthesis in plants. Science, 295: 147-150, 2002 (IF: 41.058; Times Cited: 501)

2. Arioli, T., Peng L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., Williamson, R. E.* Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279:717-720, 1998 (IF: 41.058; Times Cited: 938)

3. Peng, L., Hocart, H., Redmond, W., Williamson, E.* Fractionation of carbohydrates in Arabidopsis seedling cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta, 211: 406-414, 2000. (IF: 3.460; Times Cited: 217).

4. Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology, 126: 981-992, 2011. (IF: 6.620; Times Cited: 110).

5. Wang, Y. #, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 34(5): 997-1017. 2016 (IF: 11.848; Times Cited: 23).

6. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng, L.* Mild chemical pretreatments are sufficient for bioethanol production in the transgenic glucosidase-overproduced rice straw. Green Chemistry, 2018 (IF: 9.125).

7. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175:82-90, 2016.  (IF: 7.900; Times Cited: 18).

8. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal, 13: 514-525, 2015. (IF: 6.305, Times Cited: 33).

9. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology, 130:30-37, 2013. (IF: 5.978; Times Cited: 48).

10. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels, 5(1):58, 2012.  (IF: 6.661; Times Cited: 99).

11. 王艳婷, 徐正丹, 彭良才*. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学:生命科学, 44(8): 766-774, 2014.  (被引次数: 6)

12. 彭良才. 论中国生物能源发展的根本出路[J]. 华中农业大学学报(社科). (2):1-6, 2011. (被引次数: 57)


2020年论文

1. Zhang, R., Hu, H., Wang, Y., Hu, Z., Ren, S., Li, J., He, B., Wang, Y., Xia, T., Chen, P., Xie, G., Peng, L.* A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis Journal of Experimental Botany. In press, 2020. (IF: 6.044)

2. Xu, C., Tao, X., Wang, J., Yu, L., Wu, L., Zhang, Y., Liu, P., Chen, P., Feng, S., Peng, L.* Selectively desirable rapeseed and corn stalks distinctive for low-cost bioethanol production and high-active biosorbents. Waste and Biomass Valorization. In press, 2020. (IF: 1.874)

3. Zhang, Y., Xu, C., Lu, J., Yu, H., Zhu, J., Zhou, J., Zhang, X., Liu, F., Wang, Y., Hao, B., Peng, L. Xia, T.* An effective strategy for dual enhancements on bioethanol production and trace metal removal using Miscanthus straws. Industry Crops and Products. In press, 2020. (IF: 4.191)

4. Fan, C., Yu, H., Qin, S., Li, Y., Alam, A., Xu, C., Fan, D., Zhang, Q., Wang, Y., Zhu, W., Peng, L.*, Luo, K.* Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Biotechnology for Biofuels.13:9, 2020. (IF: 6.661)

5. Yang, Q., Zhao, W., Liu, J., He, B., Wang, Y., Yang, T., Zhang, G., He, M., Lu, J., Peng, L. Wang, Y.* Quantum dots are conventionally applicable for wide-profiling of wall polymer distribution and destruction in diverse cells of rice. Talanta. 208: 120452, 2020 (IF: 4.916)


2019年论文

6. Wu, L.,# Feng, S.,# Deng, J., Yu, B., Wang, Y., He, B., Peng, H., Li, Q., Hu, R.,* Peng, L.* Altered carbon assimilation and cellulose accessibility to maximize bioethanol yield under low-cost biomass processing in corn brittle stalk. Green Chemistry. DOI: 10.1039/C9GC01237K, 2019 (IF: 9.405)

7. Alam, A., Zhang, R., Liu, P., Huang, J. Wang, Y., Hu, Z., Madadi, M., Sun, D., Hu, R., Ragauskas, A., Tu, Y., Peng, L.* A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnology for Biofuels. 12: 99, 2019 (IF: 6.661)

8. Li, Y., Sun, H., Fan, C., Hu, H., Wu, L., Jin, X., Lv, Z., Wang, Y., Feng, S., Chen, P., Peng, L. * Overproduction of fungus endo-β-1,4-glucanase leads to characteristic lignocellulose modification for largely enhanced biomass enzymatic saccharification and bioethanol production in transgenic rice straws. Cellulose. 26: 8249–8261, 2019 (IF: 3.809)

9. Wu, Y.,#  Wang, M.,# Yu, L.,* Tang, S., Xia, T., Kang, H., Xu, C., Gao, H., Madadi, M., Alam, A., Cheng, L.,  Peng, L. * A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks. Science of the Total Environment. DOI: https://doi.org/10.1016/j.scitotenv. 2019.135096, 2019 (IF: 5.589)

10. Deng, J.,,# Zhu, X.,# Chen, P., He, B., Tang, S., Zhao, W., Li, X., Zhang, R., Lv, Z., Kang, H., Yu, L.,* Peng, L.* Mechanism of lignocellulose modification and enzyme dis-adsorption for complete biomass saccharification to maximize bioethanol yield in rapeseed stalks. Sustainable Energy & Fuels. DOI: 10.1039/C9SE00906J, 2019 (IF: 4.917)

11. Fan, C., Wang, G., Wang, Y., Zhang, R., Wang, Y., Feng, S., Luo, K., Peng, L.* Sucrose Synthase Enhances Hull Size and Grain Weight by Regulating Cell Division and Starch Accumulation in Transgenic Rice. International Journal of Molecular Sciences. 20: 4971, 2019 (IF: 4.331)

12. Hu, H.,# Zhang, R.,# Tang, Y., Peng, C., Wu, L., Feng, S., Chen, P., Wang, Y., Du, X.,* Peng, L.* Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. Plant Molecular Biology. DOI:s11103-019-00910-1, 2019 (IF: 4.076).

13. Cheng, L., Wang, L., Wei, L., Wu, Y., Alam, A., Xu, C., Wang, Y., Tu, Y., Peng, L., Xia, T. * Combined mild chemical pretreatments for complete cadmium release and cellulosic ethanol co-production distinctive in wheat mutant straw. Green Chemistry. DOI: 10.1039/c9gc00686a, 2019 (IF: 9.405)

14. Fan, C., Wang, G., Wu, L., Liu, P., Huang, J., Jin, X., Zhang, G., He, Y., Peng, L., Luo, K., Feng, S.* Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3transgenic rice. Carbohydrate Polymers. DOI: https://doi.org/10.1016/j.carbpol.2019.115448, 2019 (IF: 6.044).

15. Liu, C., Xiao, Y., Xia, X., Zhao, X., Peng, L., Srinophakun, P., Bai, F. * Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances. 14(1):650-688, 2019 (IF: 12.831)

16. Li, Q., Xie, B., Wang, Y. *, Wang, Y.*, Peng, L., Li, Y., Li, B., Liu, S. * Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocolloids. 97: 105214, 2019 (IF: 6.103)

17. Huang, J., Xia, T., Li, G., Li, X., Li, Y., Wang, Y., Wang, Y., Chen, Y., Xie, G., Bai, F., Peng, L., Wang, L.* Overproduction of native endo‑β‑1,4‑glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnology for Biofuels. 12:114, 2019 (IF: 6.661)

18. Guo, X., Liu, Y., Zhang, R., Luo, J., Song, Y., li, J., Wu, K., Peng, L., Liu, Y., Du, Y., Liang, Y., Li, T.* Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii. Plant Soil. DOI:10.1007/s11104-019-04339-9, 2019 (IF: 3.306)

19. Li, A., Yang, Q., Li, Y., Zhou, S., Huang, J., Hu, M., Tu, Y., Hao, B., Peng, L., Xia, T. * Mild physical and chemical pretreatments to enhance biomass enzymatic saccharification and bioethanol production form Erianthus arundinaceus. BioResources. 14(1):650-688, 2019 (IF: 1.526)


2018年论文

20. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng, L.* Mild chemical pretreatments are sufficient for bioethanol production in the transgenic rice straws overproducing glucosidase. Green Chemistry. DOI:10.1039/C8GC00694F, 2018 (IF: 9.125)

21. Hu, H., Zhang. R., Feng, S., Wang, Y., Wang, Y., Fan, C., Li, Y., Liu, Z., Schneider, R., Xia, T., Ding, S., Persson, S., Peng, L.* Three AtCesA6-like members enhance biomass production by promoting cell growth and secondary wall thickenings in Arabidopsis. Plant Biotechnology Journal. 16: 976-988, 2018 (IF: 6.305; Times cited: 4)

22. Hu, H., Zhang, R., Dong, S., Li, Y., Fan, C., Wang, Y., Xia, T., Chen, P., Feng, S., Persson, S., Peng, L.* AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. Journal of Experimental Botany. DOI:10.1093/jxb/erx470, 2018 (IF: 6.044; Times cited: 1)

23. Cheng, S.#, Yu, H.#, Hu, M., Wu, Y., Cheng, L., Cai, Q., Tu, T., Xia, T., Peng, L.* Miscanthus accessions distinctively accumulate cadmium for largely enhanced biomass enzymatic saccharification by increasing hemicellulose and pectin and reducing cellulose CrI and DP. Bioresource Technology. 263: 67-74, 2018 (IF: 5.978)

24. Hu, H., Zhang. R., Tao, Z., Li, X., Li, Y., Huang, J., Li, X., Han, X., Feng, S., Zhang, G., Peng, L.* Cellulose synthase mutants distinctively affect cell growth and cell wall integrity for plant biomass production in Arabidopsis. Plant and Cell Physiology. DOI: 10.1093/pcp/pcy050/4921018, 2018 (IF: 4.454)

25. Jin, X., Lv, Z., Gao, J., Zhang, R., Zheng, T., Yin, P., Li, D., Peng, L., Cao, X., Qin Y., Persson, S., Zheng, B., Chen, P. * AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in Arabidopsis thalian.  Nucleic Acids Research. DOI: 10.1093/nar/gky1205, 2018 (IF: 11.561)

26. Fan, C., Li, Y., Hu, Z., Hu, H., Wang, G., Li, A., Wang, Y., Tu, Y., Xia, T., Peng, L., Feng, S.* Ectopic expression of a novel OsExtensin-like gene consistently enhances plant lodging resistance by regulating cell elongation and cell wall thickening in rice. Plant Biotechnology Journal. 16: 254-263, 2018 (IF: 6.305; Times cited: 4)

27. Li, Y. #, Zhuo, J. #, Liu, P., Chen, P., Hu, H., Wang, Y., Zhou, S., Tu, Y., Peng, L., Wang, Y.* Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydrate Polymers. 192: 273-281, 2018 (IF: 5.326)

28. Hu, M. #, Yu, H. #, Li, Y., Li, A., Cai, Q., Liu, P., Tu, Y., Wang, Y., Hu, R., Hao, B., Peng, L. Xia, T.* Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohydrate Polymers. 202: 434-443,  2018 (IF: 5.326)

29. Hu, Z., Zhang, G.., Muhammad, A., Samad, R., Wang, Y., Walton, J., He, Y., Peng L., Wang, L*. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw. Scientific Reports. DOI:10.1038/s41598-018-21741-y, 2018 (IF: 4.609; Times cited: 1)

30. Li, Y., Zhang, X., Zhang, F., Peng L., Zhang, D., Kondo A., Bai, F., Zhao, X*. Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnology for Biofuels. 11: 49, 2018 (IF: 6.661)

31. Hu, Z., Zhang, G., Chen, Y., Wang, Y., He, Y., Peng, L., Wang, L*. Determination of lignin monomer contents in rice straw using visible and near-infrared reflectance spectroscopy. Bioresources. DOI: 10.15376/biores.13.2.3284-3299, 2018 (IF: 1.526)


2017年论文

32. Li, F.#, Xie, G.#, Huang, J., Zhang, R., Li, Y., Zhang, M., Wang, Y., Li, A., Li, X., Xia ,T., Qu, C., Hu, F., Ragauskas, A., Peng, L.* OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal. 15: 1093-1104, 2017 (IF: 6.305; Times cited: 10)

33. Fan, C., Feng, S., Huang, J., Wang, Y., Wu, L., Li, X., Wang, L., Xia, T., Li, J., Cai, X., Peng, L. * AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharifcation and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnology for Biofuels. 10: 221, 2017 (IF: 6.661; Times cited: 1)

34. Huang, J., Li, Y., Wang, Y., Chen, Y., Liu, M., Wang, Y., Zhang, R., Zhou, S., Li, J., Tu, Y., Hao, B., Peng, L., Xia, T.* A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharifcation in transgenic rice by near-infrared spectroscopy. Biotechnology for Biofuels. 10: 294, 2017 (IF: 6.661)

35. Zahoor, Sun, D., Li, Y., Wang, J., Tu, Y., Wang, Y., Hu, Z., Zhou, S., Wang, L., Xie, G., Huang, J., Alam, A., Peng, L.* Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology. 243: 957-965, 2017 (IF: 5.978; Times cited: 2)

36. Zahoor, Tu, Y., Wang, L., Xia, T., Sun, D., Zhou, S., Wang, Y., Li, Y., Zhang, H., Zhang, T.,  Madadi M., Peng L.* Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresource Technology. 243: 319–326, 2017 (IF: 5.978; Times cited: 3)

37. Sun, D., Alam, A., Tu, Y., Zhou, S., Wang, Y., Xia, T., Huang, J., Li, Y., Zahoor, Wei, Y., Hao, B., Peng, L.* Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresource Technology. 239: 74–81, 2017 (IF: 5.978; Times cited: 7)

38. Li, X., Guo, K., Zhu, X., Chen, P., Li, Y., Xie, G., Wang, L., Wang, Y., Persson, S.*, Peng, L.* Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics. 18: 55, 2017 (IF: 4.257; Times cited: 1)

39. Hu, S., Wu, L., Persson, S., Peng L., Feng, S.* Sweet Sorghum and Miscanthus: Two potential dedicated Bioenergy Crops in China. Journal of Integrative Agriculture. 16(6):1236-1243, 2017 (IF: 1.19)


2016论文

40. Wang, Y. #, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 34(5): 997-1017, 2016 (IF: 11.848; Times Cited: 23).

41. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175:82-90, 2016   (IF: 7.900; Times Cited: 18).

42. Li, A., Wang, R., Li, X., Liu, M., Fan, J., Guo, K., Luo, B., Chen, T., Feng, S., Wang, Y., Wang, B., Peng L., Xia, T.* Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identi cation of cellulose synthase complexes and their potential associated- components in cotton bers. Scientific Reports. 6:26356, 2016 (IF: 4.609, Times Cited: 3)

43. Li, X., Liao, H., Fan, C., Hu, H., Li, Y., Li, J., Yi, Z., Cai, X., Peng, L., Tu, Y.* Distinct geographical distribution of the Miscanthus accessions with varied biomass enzymatic saccharification. PLoS ONE. DOI:10.1371/journal.pone.0160026, 2016 (IF: 3.352; Times cited: 2)

44. Pei, Y., Li, Y., Zhang, Y., Yu, C., Fu, T., Zou, J., Tu, Y., Peng L., Chen, P.*. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology, 203: 325-333, 2016 (IF: 5.978, Times Cited: 9)

45. Zhang, M., Wei, F., Guo, K., Hu, Z., Li, Y., Xie, G., Wang, Y., Cai, X., Peng, L., Wang, L.*. A novel FC116/BC10 mutation distinctively causes alteration in the expression of the genes for cell wall polymer synthesis in rice. Frontiers in Plant Science. DOI: 10.3389/fpls.2016.01366, 2016 (IF: 4.353; Times cited: 2)

46. Dong, S., Hu, H., Wang, Y., Xu, Z., Zha, Y., Cai., X., Peng L., Feng, S.*. An Atpqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana. Journal of Plant Research. DOI: 10.1007/s10265-016-0819-y, 2016 (IF: 2.000)

47. Wei, X., Zhou, S., Huang, Y., Huang, J., Chen, P., Wang, Y., Zhang, X., Tu, Y., Peng L., Xia, T.* Three fiber crops show distinctive biomass saccharification under physical and chemical pretreatments by altered wall polymer features. Bioresources. 11(1): 2124-37, 2016 (IF: 1.526)


2015论文

48. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal. 13: 514-525, 2015 (IF: 6.305, Times Cited: 33).

49. Wang, Y.#, Huang, J.#, Li, Y., Xiong, K., Wang, Y., Li, F., Liu, M., Wu, Z., Tu, Y., Peng L.* Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Bioresource Technology. 196: 391-398, 2015 (IF: 5.978, Times Cited: 8)

50. Zhang, J.#, Zou, W.#, Li, Y., Feng, Y., Zhang, H., Wu, Z., Tu, Y., Wang, Y., Cai, X., Peng L.*  Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science. 239: 84-91, 2015 (IF: 3.802, Times Cited: 3)

51. Sun, H., Guo, K., Feng, Q., Zou, W., Li, Y., Fan, C., Peng L.* Positive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms. Ecology and Evolution. DOI: 10.1002/ece3.1613, 2015 (IF: 2.788, Times Cited: 1)

52. Si, S.#, Chen, Y.#, Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng L., Tu, Y.*, Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource Technology. 183: 248-254, 2015 (IF: 5.978; Times Cited: 25)

53. Huang, Y. #, Wei, X. #, Zhou, S., Liu, M., Tu, Y., Li, A., Chen, P., Wang, Y., Zhang, X., Peng L., Xia, T.* Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technology. 181:224-230, 2015 (IF: 5.978, Times Cited: 26)

54. Wu, L., Li, M., Huang, J., Zhang, H., Zou, W., Hu, S., Li, Y., Fan, C., Zhang, R., Jing, H., Peng L., Feng, S.* A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum. Bioresource Technology. 177: 118-124, 2015 (IF: 5.978, Times Cited: 9)


2014论文

55. Li, M. #, Si, S. #, Hao, B., Zha, Y., Wan, C., Hong, S., Kang, Y., Jia, J., Zhang, J., Li, M.,  Zhao, C., Tu, Y., Zhou, S., Peng L.* Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource Technology. 169: 447-454, 2014 (IF: 5.978, Times Cited: 25)

56. Li, M. #, Feng, S. #, Wu, Z., Li, Y., Fan, C., Zhang, R., Zou, W., Tu, Y., Jing, H., Li, S., Peng L.* Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology. 167: 14-23, 2014 (IF: 5.978, Times Cited: 29)

57. Guo, K., Zou, W., Feng, Y., Zhang, M., Zhang, J., Tu, F., Xie, G., Wang, L., Wang, Y.,  Klie, S., Persson, S., Peng L.* An integrated genomic and metabolomic frame work for cell wall biology in rice.  BMC Genomics. 15: 596, 2014 (IF: 4.257, Times Cited: 16)

58. Jia, J. #, Yu, B. #, Wu, L., Wang, H., Wu, Z., Li, M., Huang, P., Feng, S., Chen, P.,  Zheng, Y., Peng L.* Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in Corn. PLoS ONE. 9(9): e108449, 2014 (IF: 3.352, Times Cited: 18)

59. Li, X., Xia, T.*, Huang, J., Guo, K., Liu, X., Chen, T., Xu, W., Wang, X., Feng, S., Peng L.* Distinct biochemical activities and heat shock responses of two UDP-glucose sterol glucosyltransferases in cotton. Plant Science. 219-220: 1-8, 2014 (IF: 3.802, Times Cited: 5)

60. Li, Z. #, Zhao, C. #, Zha, Y., Wan, W., Si, S., Liu, F., Zhang, R., Li, F., Yu, B., Yi, Z., Xu, N., Peng L., Li, Q.* The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus. PLoS ONE. 9(8): e105115, 2014 (IF: 3.352, Times Cited: 18)

61. Wu, Z., Hao, H., Zahoor, Tu, Y., Hu, Z., Wei, F., Liu, Y., Zhou, X., Wang, Y., Xie, G., Gao, C., Cai, C., Peng L., Wang, L.* Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass and Bioenergy. 70: 347-355, 2014 (IF: 4.232, Times Cited: 14)


2013论文

62. Wu, Z. #, Zhang, M. #,Wang, L.*, Tu, Y., Zhang, J., Xie, G., Zou, W., Li, F., Guo, K., Li, Q., Gao, C., Peng L.* Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnology for Biofuels. 6: 183, 2013 (IF: 6.661; Times Cited: 49)

63. Li, A., Xia T., Xu W., Chen, T., Li X., Fan, J., Wang, R., Feng, S., Wang, Y., Wang, B., Peng L.* An integrative and comparative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta. 237(6): 1585-1597, 2013  (IF: 3.460; Times Cited: 38)

64. Xie, G., Yang, B., Xu, Z., Li, F., Guo, K., Zhang, M., Wang, L., Zou, W., Wang, Y., Peng L.* Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS ONE. 8(1):e50171, 2013 (IF: 3.352; Times Cited: 31)

65. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130:30-37, 2013 (IF: 5.978; Times Cited: 48).

66. Li, F., Ren, S., Zhang, W., Xu, Z., Xie, G., Chen, Y., Tu, Y., Li, Q., Zhou, S., Li, Y., Tu, F., Liu, L., Wang, Y., Jiang, J., Qin, J., Li, S., Li, Q., Jing, H., Zhou, F., Gutterson, N., Peng L.* Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130:629-637, 2013 (IF: 5.978; Times Cited: 60)

67. Sun, H., Li, Y., Feng, S., Zou, W., Guo, K., Fan, C., Si, S., Peng L.* Analysis of five rice 4-coumarate: coenzyme a ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochemical and Biophysical Research Communications. 430(3):1151-6, 2012 (IF: 2.559; Times Cited: 43)


2012年之前论文

68. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels. 5(1):58, 2012  (IF: 6.661; Times Cited: 99)

69. Huang, J., Xia, T., Li, A., Yu, B., Li, Q., Tu, Y., Zhang, W., Yi, Z., Peng L.* A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresource Technology. 121:274-281, 2012 (IF: 5.978; Times Cited: 53)

70. Xie, G., Peng L.* Genetic engineering of energy crops: A strategy for biofuel production in China. Journal of Integrative Plant Biology. 53:143-150, 2011 (IF: 3.483; Times Cited: 94)

71. Peng L.*. Gutterson, N. Energy crop and biotechnology for biofuel production- meeting report. Journal of Integrative Plant Biology. 53:89-92, 2011  (IF: 3.112; Times Cited: 11)

72. Wang, L., Guo, K., Li, Y., Tu, Y., Hu, H., Wang, B., Cui, X., Peng L.* Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology. 10:282-298, 2010 (IF: 4.381; Times Cited: 113)

73. Peng, L., Hocart, C. H., Redmond, J.W., Williamson, R. E.* Fractionation of carbohydrates in Arabidopsis seedling cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta. 211: 406-414, 2000 (IF: 3.460; Times Cited: 217)

74. Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology. 126: 981-992, 2011 (IF: 6.620; Times Cited: 110).

75. Lane, D., Wiedemeier, A., Peng, L., Hofte, H., Hocart, H., Birch, R., Baskin, T., Arioli, T., Burn, J., Betzner, A., Williamson R. E.* Temperature-sensitive alleles of rsw2 link the KORRIGAN endo-b-1,4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiology. 126: 278-288, 2011 (IF: 6.620; Times Cited: 319)


中文核心期刊论文

76. 范春芬, 王艳婷, 彭良才, 丰胜求*. 植物细胞壁伸展蛋白的功能与利用. 植物生理学报. 54(8):1279–1287, 2018

77. 佀胜利, 李鸣, 贾军, 李庆, 郝勃, 王艳婷, 彭良才, 涂媛苑*. 芒草酸/碱预处理副产物的生成及对乙醇发酵的影响. 生物质化学工程. 50(3): 41-45, 2016

78. 康永波,李傲,裴岩杰,涂媛苑,周诗光,魏小洋,李庆,郝勃,夏涛,彭良才*. 芒草木质素含量影响里氏木霉产木质纤维素酶.生物技术. 25(6):604-612, 2015

79. 董舒超, 胡慧贞, 彭良才, 丰胜求*.植物百草枯抗性机理研究进展. 植物生理学报. 51(9):1373-1380, 2015

80. 张会,邹维华,张友兵,张锐,丰胜求,涂媛苑,景海春, 彭良才*. 优质高效甜高粱突变体的筛选与鉴定. 华中农业大学学报. 34(5):1-6, 2015

81. 易晓燕, 李丰成, 郭凯, 张冉, 李旭凯, 王友梅, 彭良才, 谢国生*. 水稻半纤维素支链合酶GT61家族基因的结构特征和组织表达分析. 中国农业大学学报. (20)2, 2015

82. 王艳婷, 徐正丹, 彭良才*. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学:生命科学. 44(8): 766-774, 2014

83. 韩笑, 郭凯, 李新新, 刘绪, 王炳锐, 夏涛, 彭良才, 丰胜求*. 拟南芥纤维素合酶基因时空表达模式与功能预测.植物学报. 49(5): 539-547, 2014

84. 李旭凯, 彭良才, 王令强*.  Pep_pattern.pl搜索蛋白质序列Motifperl脚本. 华中农业大学学报. 4:1-6, 2014

85. 李旭凯, 郭凯, 彭良才, 王令强*. ChooseMaterials.pl,控制变量挑选实验材料的perl脚本. 生物信息学.11(3): 186-191, 2013

86. 冯永清, 邹维华, 李丰成, 张晶, 张会, 谢国生, 涂媛苑, 路铁刚, 彭良才*.特异水稻脆茎突变体生物学特性及生物质降解效率的研究. 中国农业科技导报,15(3): 77-83, 2013.

87. 李先良, 李傲, 彭良才, 夏涛*.棉花纤维素合酶复合体蛋白的分离与鉴定. 棉花学报. 25(2): 129-134, 2013

88. 刘琳, 俞斌, 黄鹏燕, 贾军, 赵华, 彭俊华, 陈鹏, 彭良才*.不同基因型对芒(Miscanthus sinensis)愈伤组织诱导及分化的影响. 植物学报. 48(2): 192-198, 2013

89. 陈婷婷, 李旭凯, 王如意, 彭良才, *.棉花GhPME1GhPME2基因的克隆和表达分析. 中国农业大学学报. 17(5): 7-14, 2012

90. 徐雯, 邓宗汉, 陈婷婷, 彭良才, 夏涛*.棉花纤维RNA提取方法的比较及酵母双杂交文库的构建. 中国农学通报. 28(30): 177-183, 2011

91. 范建, 刘绪, 范春芬, 黄江锋, 罗兵, 彭良才, 夏涛*.棉花纤维素生物合成相关蛋白的抗体制备. 棉花学报. 24(2): 106-113, 2011

92. 陶章生, 徐雯, 张苗苗, 彭良才, 丰胜求*. 拟南芥纤维素合酶的抗体制备与检测. 华中农业大学学报. 31(2) : 171-177, 2011

93. 张苗苗, 陶章生, 陈婷婷, , 彭良才, 丰胜求*.水稻纤维素合酶多克隆抗体的制备和鉴定. 华中农业大学学报. 30(4): 393-397, 2011

94. 彭良才.论中国生物能源发展的根本出路[J]. 华中农业大学学报(社科). (2): 1- 6, 2011


著书:

1. Chen, P., and Peng, L*. The diversity of lignocellulosic biomass resources and their evaluations for use as biofuels and chemicals. In: Sun J Z, Ding S Y, Peterson J D, eds. Biological Conversion of Biomass for Fuels and Chemicals: Explorations from Natural Biomass Utilization Systems. Royal Society of Chemistry, 2013, 83-109. ISBN: 978-1-84973-424-0

2. Xie, G., and Peng, L*.Book Chapter entitled “Genetic Engineering of Bioenergy Crops.” In: Wang L J, ed. Sustainable Bioenergy Production. Taylor and Francis. 2014

专利:

1. Arioli, T., Williamson, R. E., Betzner, A. S., Peng, L. Manipulation of cellulose and/or beta–1,4-glucan. International Patent Application No. PCT/AU97/ 00402, ANU and CSIRO, Australia

2. 彭良才,范春芬,丰胜求,李英,夏涛,王令强,利用伸展蛋白提高水稻抗倒伏能力的方法,授权专利号:ZL201710034163.5

3. 彭良才,丰胜求,谢国生,王令强,王艳婷,李英,范春芬,孙海燕,胡慧贞,利用外切葡聚糖酶提高水稻秸秆降解转化效率的方法,授权专利号:ZL201611079476.4

4. 彭良才,郝勃,夏涛,涂媛苑,王艳婷,涂芬,熊科,魏小洋,一株利用木糖高效发酵乙醇的转基因工程酿酒酵母SF4,授权专利号:ZL201611019716.1

5. 彭良才,夏涛,涂媛苑,金文祥,陈灵,一种用芦苇高效生产纤维素乙醇的方法,专利号20161063083542016.08.04

6. 彭良才,丰胜求,范春芬,涂媛苑,王艳婷,利用蔗糖合酶提高水稻稻瘟病抗性的方法,专利号201710034179.62017.01.18

7. 彭良才,范春芬,丰胜求,夏涛,谢国生,利用蔗糖合酶提高水稻白叶枯抗性的方法,专利号201710033942.32017.01.18

8. 彭良才,丰胜求,范春芬,李英,涂媛苑,陈鹏,利用蔗糖合酶提高水稻茎秆抗倒伏能力的方法,专利号201710034026.12017.01.18

9. 王令强,彭良才,谢国生,朱晓博,胡慧贞,一种LR酶可识别和作用的位点对和引物对及质粒构建方法,专利号201710150563.22017.3.14

10. 王令强,彭良才,谢国生,胡慧贞,朱晓博,张贵粉,一种LR酶可识别和作用的位点对和引物对及质粒构建方法,专利号201710150895.02017.3.14



 

版权所有:Copyright © 华中农业大学植物科学技术学院

地址:湖北省武汉市洪山区狮子山街1号华中农业大学第三综合楼

邮箱:zkbg@mail.hzau.edu.cn

电话:027-87282130

邮编:430070